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1. Introduction

It was shown in [1] that the topological string theory on the coset SL(2, R)1/U(1) (the

cigar at supersymmetric level one) is equivalent to the c = 1 non-critical bosonic string at

radius R =
√

α′.1 In the last few years, there has been a lot of progress [3 – 7] towards

the full solution of the SL(2, R)/U(1) coset theory. Using these results, a large class of

1Recent work [2] maps the topological cigar at arbitrary level k to bosonic non-minimal c < 1 matter

coupled to Liouville.
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closed string correlation functions of the two theories were explicitly checked to agree [8].

We extend this map and identify the respective D-branes of the two theories with each

other, by observing that the one-point functions defining boundary states in the c = 1

string coincide with the topological couplings of boundary states in the cigar, and that the

spectrum and two point functions of the open strings on these branes are equal.

Before discussing the open string theories, we clarify aspects of the equivalence of

the cohomologies of the topological coset and the c = 1 bosonic string theory. Using the

analysis of null vectors in Verma modules of affine SL(2, R), we identify the origin of the

bosonic string cohomology in the supercoset Hilbert space.2 We thereby reproduce and

clarify the relation between the analysis of the cohomology as described in the appendix

of [1] (by E. Frenkel) and the identification of certain explicit representatives of the c = 1

string cohomology in [1].

It was observed in [1] that all values of the SL(2, R) quantum number j such that

2j ∈ Z have to be included for the map of closed string operators between the c = 1

string and the coset to work. However it was shown in [11] that the Hilbert space for

string theory on the parent SL(2, R) theory is obtained by restricting j to be in the range3

−1
2 ≥ j > −k+1

2 while allowing for all spectrally flowed sectors. The spectrum of the coset

theory is obtained by descent from the same (restricted) parent Hilbert space [12]. For

k = 1, this Hilbert space for the discrete representations is given by
∑

w D+,w

−j= 1
2

, w ∈ Z

(for the left-movers). We show that those topological closed string observables found in [1]

with j outside the unitary range can be written as operators descended from j = −1
2 in

spectrally flowed sectors.

We then turn to the open string sectors of the two theories. The c = 1 model has two

types of branes — the first type (ZZ branes [13]) is localized in the strong coupling region

and is parameterized by two integers (m,n). Out of these, only the first in the series,

the (1, 1) brane, is unitary in the Lorentzian theory. The second type (FZZT branes [14,

15]) extends to infinity towards the weak coupling end of the Liouville direction, and

dissolves at a finite value of the Liouville coordinate. These branes are parameterized by a

continuous complex parameter µB whose absolute value measures the position where the

brane dissolves.

The cigar theory has branes which are zero, one and two dimensional. The unitary B-

branes which we consider are of two kinds: the D0-branes, with no continuous parameter,

which are localized near the tip of the cigar and carry a charge under the RR zero form;4

and the D2-brane, filling the cigar, that are parameterized by a continuous parameter µ̃B

which also measures the extent of the brane towards the tip. We show that the one-point

functions for both the localized/extended branes when restricted to the topological sector

of the coset agree respectively with those of the ZZ/FZZT branes of the c = 1 string.

2The observation that an SL(2, R) current algebra appears in the context of light-cone 2D gravity was

already made in [9, 10]. There, the relation between c = 1 observables and degenerate representations of

SL(2, R) is also mentioned briefly.
3In our conventions, where k here is the supersymmetric level.
4Note that we will be considering always the Euclidean theory on the cigar and the “D0-brane” is really

an instanton.
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We then proceed to compare the open string chiral primaries on the cigar branes using

the annulus amplitude, and find that they indeed match the physical open string excitations

of the c = 1 branes. The D0 brane in the topological theory has two physical open string

states that match the two perturbative physical degrees of freedom of the ZZ branes in

the c = 1 string theory at self dual radius. The D2 brane in the coset has a countably

infinite set of chiral primary open string excitations (similar to the closed string case). We

compute the two point functions of these open chiral primaries and find that they match

the correlators of physical operators on the FZZT branes in the c = 1 string theory.

Organization

In section 2, we review the supercoset theory and its twisting, in order to establish conven-

tions for the sequel. The A-twist of this model is equivalent to the c = 1 theory at self-dual

radius. In section 3, we map the closed string operators by analyzing the null vectors in

the Verma modules of SL(2, R) and using the Wakimoto representation of SL(2, R). We

also identify, using spectral flow, the operators in the Hilbert space of the parent SL(2, R)

theory which (after descent to the coset) map to the c = 1 states. In section 4, we show

that the one-point functions defining the localized and extended D-branes are equivalent

in the two theories, and match the open string marginal deformations of the branes as well

as their reflection amplitudes. In appendix A, we collect a few useful facts about vertex

operators on the cigar. In appendix B, we exhibit an extended N = 2 algebra in the

asymptotic variables of the cigar.

2. The twisted SL(2, R)/ U(1) coset

2.1 The N = 2 structure

Let us first review the coset construction of Kazama-Suzuki [16] that leads to an N = 2

superconformal algebra. We follow the conventions in [17] which are natural from the point

of view of the cigar geometry and perform the axial gauging of the U(1) subgroup of the

SL(2, R). The N = 1 currents of the parent SL(2, R)k theory has currents (Ja, ψa) that

satisfy the OPE

Ja(z)Jb(w) ∼ gab k/2

(z − w)2
+

fab
c Jc

z − w

Ja(z)ψb(w) ∼ ifab
c ψc

z − w

ψa(z)ψb(w) ∼ gab

z − w
. (2.1)

Our conventions are such that gab = diag(+,+,−) and f123 = f
123

= 1. In order to define

the N = 2 currents, it is convenient to first define

ja = Ja − Ĵa = Ja +
i

2
fa

bc ψb ψc . (2.2)

The currents (ja, j
a
) commute with the free fermions (ψa, ψ

a
) and generate a bosonic

SL(2, R) at level k + 2. The Hilbert space of the original N = 1 SL(2, R)k model therefore

– 3 –
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factorizes into a purely bosonic SL(2, R)k+2 and 3 free fermions. We now implement the

quotient of the action of (J3, ψ3) following Kazama and Suzuki [16]. The N = 2 currents

are given by:

T = TSL(2,R) − TU(1)

G± =

√

2

k
ψ± j∓

JR =
2

k
j3 +

(

1 +
2

k

)

Ĵ3 =
2

k
J3 + ψ+ ψ− (2.3)

where the U(1) energy momentum tensor is

TU(1) = −1

k
J3J3 +

1

2
ψ3∂ψ3 , (2.4)

and where we have used the formulae ψ± = ψ1±iψ2
√

2
and j± = j1±ij2

√
2

. These conventions

are chosen so that the superscript denotes the charge. Note that we have conventions

that are completely left-right symmetric and so we have not specified the right movers

explicitly. The currents in (2.3) generate an N = 2 superconformal algebra with central

charge c = 3 + 6
k .

2.2 Gauging

To clarify the geometry and construct the operator spectrum of the coset, it is useful to

follow the procedure [18] of gauging the U(1) symmetry by the addition of a gauge field.

The axial gauging of the coset is done by adding an extra boson X, and restricting to

cohomology of an additional BRST charge, whose currents are given by

JBRST = C

(

J3 + i

√

k

2
∂X

)

+ γ′ (ψ3 + ψX) , (2.5)

and similarly for the right-movers. Here, (B,C) is a (1, 0) ghost system associated with

this BRST symmetry with central charge c = −2. The fields X,X are the left and right

moving components of the boson which will be identified with the angular direction of the

cigar geometry. The β′, γ′ superghosts remove the contributions of the fermions ψ3 and

ψX leaving the two free free fermions on the cigar ψ±. The gauging currents are defined

to be5

Jg = J3 + i

√

k

2
∂X Jg = J

3
+ i

√

k

2
∂ X . (2.6)

From the definition, it is easy to check that it is a “null-current” and has non-singular

OPE’s with T , JR and also with itself.

5A Note on Conventions: We can denote a group element of SL(2, R) as [11] g = ei
(t+ϕ)

2
σ2 eρσ3 ei

(t−ϕ)
2

σ2 .

Here, ρ, t and φ are the global coordinates on SL(2, R). The action of the left and right currents J3 and

J
3

on g is of the form g −→ hL · g · h−1
R . Thus, the generator J3 + J

3
generates translations around the

compact ϕ direction, which results in the quantization of the J3 + J
3

eigenvalue. Furthermore we treat

X + X as the geometric coordinate and according to (2.6), we identify it with ϕ. Thus, we gauge axially

the non-compact direction t, as in [18] (though the conventions are different). The closed string background

therefore is identical to the euclidean black hole described in [19].
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Field ∆ Q c

X − 0 1

φ −
√

2
k =

√
2 1 + 6

k = 7

(ψ+, ψ−) (1/2, 1/2) − 1

(ψ
+
, ψ

−
) (1/2, 1/2) − 1

(β, γ) (1, 0) − 2

(B,C) (1, 0) − −2

Table 1: List of fields in the untwisted theory, their conformal weight ∆, the background charge

Q for the bosons and the central charge c.

2.3 Wakimoto representation of SL(2, R)

In what follows, we will make extensive use of the Wakmoto free field representation of the

SL(2, R) currents in terms of which

j+ = β j
−

= −β

j3 = −β γ −
√

k

2
∂φ j

3
= β γ +

√

k

2
∂φ

j− = β γ2 +
√

2k γ ∂φ + k ∂γ j
+

= −β γ2 −
√

2k γ ∂φ − k ∂γ (2.7)

Note that we have opposite sign conventions on the right moving sector. We will see that

this is convenient to perform the A-twist. The energy momentum tensor in these variables

is given by

TSL(2,R) = β ∂γ − 1

2
(∂φ)2 − 1√

2k
∂2φ − 1

2
ψ+∂ψ− − 1

2
ψ−∂ψ+ . (2.8)

We collect the various fields and some of their properties in table 1.

2.4 Twisting

¿From this section on, we restrict attention to the case k = 1, i.e. to an N = 2 superconfor-

mal theory at central charge c = 9. However in subsequent sections, we retain the symbol

k for the level to clarify and interpret many of the operations to be discussed. The twisting

in the more general case at arbitrary level k has been discussed in [2]. We will perform the

A-twist in what follows. It is defined by modifying the energy momentum tensor as

T −→ T +
1

2
∂JR T −→ T − 1

2
∂J

R
, (2.9)

where JR, J
R

are the left and right R-currents that appear in (2.3). Using the explicit

expressions for the currents in terms of the Wakimoto free fields, the twisted energy mo-

mentum tensor can now be written as

T = −∂βγ − 1

2
(∂φ)2 −

√
2 ∂2φ − 1

2
(∂X)2 − 1

2
ψ+∂ψ− − 1

2
ψ−∂ψ+ +

3

2
∂(ψ+ψ−)
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T = −∂βγ − 1

2
(∂φ)2 −

√
2 ∂

2
φ − 1

2
(∂X)2 − 1

2
ψ

+
∂ψ

− − 1

2
ψ
−
∂ψ

+ − 3

2
∂(ψ

+
ψ
−
) . (2.10)

We collect in table 2, the conformal dimensions and central charges of the twisted theory.

We can easily recognize the field content of the bosonic c = 1 string by identifying X with

Field ∆ Q c

X −
√

2k −
√

2
k = 0 1

φ −
√

2
k +

√
2k = 2

√
2 1 + 6(k+1)2

k = 25

(ψ+, ψ−) (−1, 2) − −26

(ψ
+
, ψ

−
) (2,−1) − −26

(β, γ) (0, 1) − 2

(B,C) (1, 0) − −2

Table 2: List of fields in the twisted theory, their conformal weight ∆, the background charge Q

for the bosons and the central charge c.

the matter field and the field φ with the Liouville field [1]. The fermions on the cigar get

identified with the (b, c) ghosts related to reparametrization invariance on the worldsheet.

But note from table 2 that it is ψ− and ψ
+

that become spin-2 anti-ghosts on the left and

right sectors. The BRST currents are therefore given by

Qtop := Q+ =

∮

G+ =

∮

ψ+j− and Qtop := Q
−

=

∮

G
−

=

∮

ψ
−

j
+

, (2.11)

while the other twisted supercurrents are identified with

G− = ψ− β = b β and G
+

= ψ
+

β = b β , (2.12)

where we have used the Wakimoto representation for the j+ and j
−

currents. The quartet

of (β, γ) and (B,C) have total central charge zero. As shown in [20], after restricting to

the cohomology of the two BRST charges associated with the gauging and twisting, they

decouple from the rest of the fields leaving behind the pure c = 1 bosonic theory.

3. Mapping of closed string cohomology

3.1 Observables of the topological cigar

In this section, we derive the map of closed string operators in the two theories along

the lines of [1]. In the next section, we will interpret most of the operators as being

descendants of operators in spectrally flowed sectors. But in the present subsection, we

allow the parameter that labels the Casimir of the discrete representations, j, to take all

half-integer values. It is well known that the observables of the topological A-model [21]

are the chiral primaries ((c, a) operators) in the NS-NS sector of the untwisted theory.

These states are annihilated by G+
−1/2 and G

−
−1/2 which implies the relation 2∆ = Q and

2∆ = −Q between the conformal dimension and R charge on the left and right sector.

– 6 –
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3.1.1 Verma modules of the SL(2, R)3 Kac-Moody algebra

We shall restrict ourselves to the left-moving sector of the theory and we consider a Hilbert

space for the theory which allows for Verma modules built on both highest weight (HWS)

and lowest weight state (LWS) discrete representations, D−
j and D+

−j . (Chiral primaries

originate in discrete representations.) Let us first consider the LWS representations. A

lowest weight state is annihilated by j− (and hence by G+, from (2.3)) and has mbos = −j.

The Verma module built on this state has null states which in turn are also lowest weight

states. Each of these states will give rise to a chiral primary in the cigar and hence to an

observable of the topological coset.

�� ������

L 0

3

0
j1

Figure 1: The weight diagram for a Verma module built on a lowest weight representation D+

−j

of SL(2, R) with Casimir parametrized by j ≥ 0, with primary marked by the big full dot, and null

vectors marked by open white circles. (The small black dots on the horizontal axis are calibrations.)

The location of the null states in the weight diagram of the Verma module can be

obtained from the Kac-Kazhdan determinant formula [22]. For D+
−j, there is a null state

for every pair of integers (r, s) which satisfy

2j + 1 = r + s such that r · s > 0 or r > 0 and s = 0 . (3.1)

The dimension and j3 eigenvalue of the null vector relative to the original LWS are respec-

tively given by ∆h = r · s and ∆mbos = r. Let us consider the cases 2j + 1 ≤ 0. There are

two exceptional cases:

• For 2j + 1 = 0, we see from the Kac-Kazhdan formula that the Verma module is

irreducible. The only primary is the original LWS state with j = −mbos = −1
2 .

• For 2j + 1 = −1, or j = −1, there are again no null states among the descendants

and the module is irreducible.

For 2j + 1 ≤ −2, we always have a null vector with s = −1 and r = 2j + 2. The Verma

module built on this null vector is reducible and its null vectors coincide with all other null

– 7 –
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�� ������

3j
0

L 0

1

Figure 2: The weight diagram for a Verma module built on a lowest weight representation D+

−j

with Casimir j ≤ − 1

2
, with primary marked by the big full dot, and null vectors marked by open

white circles.

vectors present in the original LWS module. On the other hand, for a Verma module with

2j + 1 > 0, there is a null vector with s = 0 and r = 2j + 1 and again, the Verma module

built upon this null vector includes all other null vectors. Using these two facts, we find

that the original LWS module is reducible and can be resolved into a string of irreducible

modules [23, 1]. For j ≥ −1
2 , we find

Ij ← I−j−1 ← Ij−1 ← . . . ← I0 ← I−1 (3.2)

where Ij refers to the irreducible representation built on a LWS with mbos = −j. Similarly

for j ≤ −1, we get

Ij ← I−j−2 ← Ij+1 ← . . . ← I0 ← I−1 (3.3)

We summarize these results by labeling the j3
0 spectrum of lowest weight states as S+

> =

{−j, . . . , j + 1} for j ≥ −1
2 and S+

< = {−|j| + 2, . . . , |j|} for j ≤ −1.

The analysis of null vectors and the embedding diagrams for the Verma modules built

on highest weight states proceeds very similarly. Null vectors now have a relative charge

∆mbos = −r. The highest weight states of D−
j have j = mbos. Again, for spins 0 and −1

the Verma module is irreducible. We find the embedding diagrams (for integer j)

I ′j ← I ′−j−2 ← I ′j+1 ← . . . ← I ′0 ← I ′−1 for j ≤ −1

I ′j ← I ′−j−1 ← I ′j−1 ← . . . ← I ′0 ← I ′−1 for j ≥ −1/2 (3.4)

where I ′j is the irreducible representation built on a HWS with mbos = j. We denote

the spectrum of highest weight states: S−
> = {−j − 1, . . . , j} for j ≥ −1

2 and S−
< =

{−|j|, . . . , |j| − 2} for j ≤ −1.

3.1.2 Cohomology of Q

For every such null vector, we will find a state in the c = 1 BRST cohomology as follows:

from these highest and lowest weight primary states, we first construct representatives of

– 8 –
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� �� �
� �� �����

��
��

��
��

L
0

3

0
j

−1

Figure 3: The weight diagram for a Verma module built on a lowest weight representation D−

j

with Casimir j ≥ 0, with primary marked by the big full dot, and null vectors marked by open

white circles.

��		

�� ��

 ����

0
L

3j
0

−1

Figure 4: The weight diagram for a Verma module built on a lowest weight representation D−

j

with Casimir j ≤ − 1

2
, with primary marked by the big full dot, and null vectors marked by open

white circles.

the BRST cohomology of the topological cigar theory. In order to do that, we consider the

BRST operator:

Q = Qtop + QU(1) =

∫
[

cj− + C

(

j3 + cb +
i√
2
∂X

)]

. (3.5)

In the cohomology relative to the zero-mode of C, we consider only states annihilated by

j3
0 +

∫

i√
2
∂X +

∫

cb , (3.6)

which leads to the equation for states in the relative cohomology:

−pX = m = (mbos + ngh) . (3.7)

where ngh is the ghost number.

– 9 –
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Now, we can construct states in the BRST cohomology of the topological cigar theory

by considering the following states (see [24] for conventions for ghost sector):

| ↓〉 ⊗ |LWS〉 (3.8)

combined with the state with the appropriate X-momentum fixed by (3.7). These states

are at ghost number −1/2. The corresponding operator, by the state-operator correspon-

dence [24] is at ghost number one. Thus, we find operators corresponding to states in the

BRST cohomology which are at ghost number one. These operators, given the spectra

for mbos found above for the highest weight states, and the link between the m-quantum

number, mbos and the ghost charge of the state (3.7), have a spectrum of m-values which

is S+
> = {−j − 1/2, . . . , j + 1/2} and S+

< = {−|j| + 3/2,−|j| + 1/2, . . . , |j| − 1/2}. Notice

that the latter spectrum can be split as S+
< = {|j|−1/2}∪{−|j|+3/2, . . . , |j|−3/2}. This

will prove useful in identifying the c = 1 states to which these chiral primaries are mapped.

We first consider the case j ≥ −1
2 . Defining s = j + 1

2 , the range of X-momentum

in S+
> fills out a spin s SU(2)-representation. It will be convenient to provide free field

(Wakimoto) representations of certain cohomology elements at this point. We choose the

sign of φ-momentum to be opposite to the sign of j (modulo a constant shift). Demanding

that the SU(2)-highest weight state with (pX = j + 1
2) has dimension zero in the twisted

theory, we find

Vj = c e−
√

2 φ e
√

2(j+ 1
2)(−φ+iX) = ce−

√
2(s+1)φ ei

√
2sX ≡ Y −

s,s . (3.9)

In the last equality, we have identified the vertex operator with the tachyonic state at

ghost number one denoted Y −
s,s in [25]. The rest of the null vectors in S+

> are obtained by

acting alternately with j+
0 and j−−1 in the SL(2, R) representation. This leads to operators

with the same φ-momentum but with X-momentum decreased by one. This operation is

equivalent to acting with the coset analog of the SU(2) lowering operator K− (introduced

in [1]) on the operator in formula (3.9)

K− =

∮

β e−i
√

2X . (3.10)

In this way we can show that the elements in the topological coset cohomology which arise

from all the lowest weight states in the Verma module with j ≥ −1
2 correspond to the

elements Y −
s,n of the c = 1 bosonic string cohomology (row two of table 3).

We turn to the case j ≤ −1, the elements in S+
< , which has the opposite sign for

the Liouville momentum. Again, the lowest weight states gives rise to elements in the

cohomology of ghost number 1. The state with m = −pX = |j| − 1
2 can once again be

given a Wakimoto representation. Defining s = −(j + 1
2), we get the state with the lowest

X-momentum in the SU(2) s-multiplet :

Y +
s,−s = c e

√
2(s−1)φ e−i

√
2sX . (3.11)

The operator corresponding to the next null vector in the weight diagram is found by acting

with (j−−1)
2|j|−1. The resulting operator is

Bj|j=−s− 1
2

= c γ2s−1 e
√

2(s−1)φ ei
√

2(s−1)X . (3.12)
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We claim that this operator is identical to the operator aOs−1,s−1, which is a discrete state

at ghost number one, which is the partner of a ground ring element Os−1,s−1. The notation

for the elements of the cohomology is taken from [26], where a is defined to be

a = [Qtop,
φ√
2
] . (3.13)

This is an operator in the Q-cohomology as it is Q-closed and not Q-exact if we restrict to

the space of conformal fields (since φ is not a conformal field). Using the explicit Wakimoto

representation of the coset theory, we get [1],

a = cγ . (3.14)

Substituting this in (3.12), we see that if our identification is correct, then the ground ring

element Os−1,s−1 has a Wakimoto form

Os−1,s−1 = γ2(s−1) e
√

2(s−1)φ ei
√

2(s−1)X

=
[

γ2 e
√

2(φ+iX)
]s−1

= (O 1
2
, 1
2
)2(s−1) . (3.15)

The O are the discrete states at ghost number zero which form a ring on account of regular

OPEs with themselves. We see that we have recovered the ring structure obtained in [25]

thereby confirming our identification. Note that using our definition of a in the coset,

O0,0 = 1 as expected. We also observe that a = B−3/2 and a ∈ D+
3/2. Once the top element

Os−1,s−1 has been obtained, the lowering operator K− can be used to construct all the

ghost number zero operators Os−1,n and their partners aOs−1,n.

To summarize, we see that the elements in the topological coset cohomology which arise

from all the lowest weight states in the Verma module of D+
−j with j ≤ −1 correspond to the

elements {Y +
s,−s , aOs−1,n} of the c = 1 bosonic string cohomology (row one of table 3). To

check that there are the right number of operators Y − relative to the number of operators

aO, it suffices to count their number at a given value of the quadratic Casimir for the D+
−j

representation. One finds then the expected relative number of operators.

Next, we observe that also from the highest weight states, we can construct non-

trivial elements in the BRST cohomology. Since the states now need to be of the form

| ↑〉 ⊗ |HWS〉 = c0| ↓〉 ⊗ |HWS〉 (to be annihilated by the BRST charge), the spectrum of

the bosonic j3
0 quantum numbers is now shifted oppositely to find the m-spectrum, namely

by +1/2. This also implies that the operators we find now are at ghost number two, by the

state-operator correspondence. The operator now contains a factor c∂c, at ghost number

two.

The spectrum of m values is given by S−
> = {−j − 1

2 , . . . , j + 1
2} for j ≥ −1

2 and

S−
< = {−|j| + 1

2 , . . . , |j| − 3
2} = {−|j| + 1

2} ∪ {−|j| + 3
2 , . . . , |j| − 3

2} for j ≤ −1. We

can repeat the analysis performed for the D+
−j representations. Once again, the sign of j

determines the sign of the Liouville momentum. We find that for j ≥ −1
2 , these operators

correspond to the ghost number two operators aY +
s,n on the c = 1 side while for j ≤ −1,

we get the operators Ps−1,n while the state with m = −pX = −|j| + 1
2 gives rise to

the operator Y −
s,s. (Again one can check the relative number of these operators at given
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Repn ngh s Spectrum c = 1 Operator

D+
−j j ≤ −1 1 −

(

j + 1
2

)

−|j| + 3
2 , . . . , |j| − 1

2 aOs−1,n , Y +
s,−s

D+
−j j ≥ −1/2 1 j + 1

2 −j − 1
2 , . . . , j + 1

2 Y −
s,n

D−
j j ≤ −1 2 −

(

j + 1
2

)

−|j| + 1
2 , . . . , |j| − 3

2 aY −
s,s , Ps−1,n

D−
j j ≥ −1/2 2 j + 1

2 −j − 1
2 , . . . , j + 1

2 aY +
s,n

Table 3: Partial list of operators in Q-cohomology.

quadratic Casimir.) We summarize our results in table 3. Once we have these basic

operators, we use the techniques in [26] to generate partners of the existing cohomology

elements by either multiplying by a or by taking away a factor of a. This generates partner

states at ghost numbers one greater or one less than the state one started off with. The

inverse a-operation is carried out by using the operator G−
1/2 in the coset theory. In the

twisted theory and in the Wakimoto variables, this coincides with the operation βb0 (in

agreement with [26]).

Thus, the operators in table 3, combined with the operators obtained from them by

the a or inverse a-operation give us representatives of all remaining cohomology classes (or

their duals) as enumerated in [26]. We have therefore proven that the chiral topological

coset cohomology, when computed on the Hilbert space

H =
∑

j∈ Z

2

(

D+
−j + D−

j

)

(3.16)

coincides with the chiral cohomology of the c = 1 string.

3.2 c = 1 observables from spectrally flowed representations

As mentioned in the introduction, the full spectrum of the SL(2, R)1 theory within the

improved unitarity bound [11] is given by
∑

w D+,w
1/2 . The states of the coset therefore have

to descend from this Hilbert space. It is therefore important to check whether the states

in the cohomology of Qtop we have found (that match to the c = 1 string) can be rewritten

as states descending from spectrally flowed representations. In this section, we show that

this is indeed the case. We first make a few observations about spectral flow:

• Consider a state in the coset |s1〉 with

|s1〉 : Lcig
0 = −j(j + 1) + m2 J3

0 = m Ĵ3
0 = 0 JR

0 = 2m . (3.17)

This descends from a state in the parent theory with

L0 = −j(j + 1) J3
0 = m Ĵ3

0 = 0 . (3.18)

A spectral flow by w units takes this state to another state with

L0 = −j(j + 1) +
mw

2
− w2

4
J3

0 = m +
w

2
Ĵ3

0 = −w . (3.19)
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Pu,n

aPu,nY
−

u+1,n

aY
−

u+1,n

aOu,n

Ou,n

Y
+

u+1,n

aY
+

u+1,n

Figure 5: The states in the c = 1 string theory. We denote u = s − 1. Ghost number increases

from zero to three from left to right. The boxed elements at ghost number one Y − and aO originate

from D+

−j representations in the coset while the ghost number two states aY + and P originate from

the D−

j representations. The tachyon operators Y ±

s,±s are not shown in the diagram.

This state descends in the cigar to |s2〉 with

|s2〉 : Lcig
0 = −j(j + 1) + m2 J3

0 = m +
w

2
Ĵ3

0 = −w JR
0 = 2m . (3.20)

In particular, the dimension and R-charge of the state in the coset does not change.

The fermion number ( = ghost number in the c = 1 theory) changes by w units.

• The operator G−
1/2 in the untwisted theory changes the dimension and R-charge of

a state by (−1
2 ,−1), and therefore acts on the Qtop cohomology. This operator also

decreases the fermion number by 1 unit. Recall that this is identical to the inverse-a

operation mentioned in subsection 3.1.2.

Following the construction in section 3.1, we now give an algorithm that allows us to

obtain all physical states of the c = 1 theory starting with the operator Φ− 1
2
, 1
2

and doing

the operations of spectral flow, finding descendants using the operators j+
0 and j−−1 and

the “inverse-a” operation (acting with G−
1/2). All these are operations strictly within the

untwisted coset theory. The resulting states in the twisted theory will be BRST cohomology

elements.

• Start with the operator Φ− 1
2
, 1
2

which has dimension and R-charge given by 2Lcig
0 =

JR = 1 in the untwisted theory. From table 3, we see that in the topological theory,

this maps to the state

Φ− 1
2
, 1
2

= Y +
0,0 = Y −

0,0 = c e−
√

2φ . (3.21)
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We will obtain other states in the c = 1 theory by repeatedly applying a two-step pro-

cedure: (a) spectral flow by one unit, (b) act by G−
1/2. The operator that implements

the spectral flow can be explicitly written out in Wakimoto variables as6

U = c β−1 e
i√
2
X

e
− φ√

2 . (3.22)

Acting with U on Y ±
0,0 results in

c ∂c β−1 e
− 3√

2
φ

e
i√
2
X

= aY −
1
2
, 1
2

, (3.23)

where the explicit representatives are given in [1]. From table 3, this operation (in

coset variables) takes a state Y −
0,0 ∈ D+

1/2 to a state aY −
1
2
, 1
2

∈ D−
−1 and amounts to

exchanging the two limits of the improved bound −1/2 ≥ j ≥ −1. This confirms

that U indeed implements spectral flow. Acting on this state with G−
1/2 removes the

factor of a and we thus get Y −
1
2
, 1
2

. The corresponding operator in the untwisted theory

has 2Lcig
0 = JR = 0.

More generally, if we start with a state at ghost number one with 2Lcig
0 = JR = −j,

what we have shown is that spectral flow by one unit w = −1 preserves the 2Lcig
0 =

JR as shown above. Then act by G−
1/2 to get a state at ghost number one with

2Lcig
0 = JR = −j − 1. In this way, one can generate all the states of the form Y −

s,s.

Once we have generated the chiral states with arbitrary low dimension, we can use

the construction of subsection 3.1.2 and get the rest of aY −
s,n — acting with j+

0 , j−−1.

• Let us now spectral flow in the opposite direction (using U−1) starting with the same

operator Y ±
0,0, but now reversing the steps: (a) multiply by a, (b) act with U−1. We

get

c e
− i√

2
X

e
− 1√

2
φ

= Y +
1
2
,− 1

2

. (3.24)

where we have again taken explicit representatives from [1]. Repeating this two

step procedure we generate all states of the form Y +
s,−s (and their ghost number two

partners). As before, we can use the construction of 3.1.2 and get the rest of Y +
s,n by

acting with j+
0 , j−−1. We have thus completely generated the states in the 2nd and

4th rows of table 3 as follows:

. . .
a←− Y +

1
2
,− 1

2

U−1

←−−− aY +
0,0

a←− Y ±
0,0

U−→ aY −
1
2
, 1
2

G−
1/2−−−→ Y −

1
2
, 1
2

U−→ . . . (3.25)

• But now, note from table 3 that the elements Y +
s,−s and Y −

s,s also appear in the 1st

and 3rd rows respectively. Thus, the descent operations on these particular states

(i.e. finding null vectors in the Verma modules) will give us all the remaining elements

at ghost number one and two as well as their partners at ghost number three/zero

obtained by multiplying/inverting a.

6This operator was introduced in [1].
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To summarize, what we have shown is that given the operator Φ− 1
2
, 1
2
∈ D+

1
2

along with

the states one can obtain from it by spectral flow, and using operations intrinsic to the

coset theory (such as acting with G−
1/2, j−0 and j+

−1), one can generate all physical operators

in the c = 1 theory. We would like to point out that most of these chiral operators in the

coset have JR
0 6= 1. The only operators which do are the chiral primary N=2 Liouville

interaction operators, which map to the Liouville interaction in the c = 1 theory.

3.3 Relative normalization

So far, the analysis of section 3.1.2 has enabled us to identify the quantum numbers of the

operators on the coset side that maps to the tachyonic operators Vj in the c = 1 string and

in equation (3.9), we have an explicit realization in terms of Wakimoto variables. However,

in the next sections where we compare disc one point functions that define D-branes in the

two theories, the relative normalization of the closed string fields becomes relevant.

In this section, we fix the precise relative normalization between the cigar chiral pri-

maries and the c = 1 tachyonic operators Vj by using the reflection amplitudes for closed

strings in the two backgrounds. In particular, we will consider certain winding operators

on the c = 1 string side that will couple to Neumann branes (in the c = 1 direction). We

recall that there are operators in the c = 1 theory which are the reflections of (3.9) off the

Liouville wall:

Ṽj = c c e−
√

2(j+ 3
2)φ e−i

√
2(j+ 1

2)(X−X) . (3.26)

These operators7 have the opposite X momentum as Vj , and the same exponent of φ. They

are related to the operators (3.9) as [14] (with γ(x) = Γ(x)
Γ(1−x)):

Vj = S(j) Ṽ−j−1

S(j) = −(πµγ(1))−2j−1

(

Γ(2j + 2)

Γ(−2j)

)2

. (3.27)

¿From the cigar theory, we can simply understand them as reflections off the tip. Operators

in the coset with j ≥ −1
2 and j ≤ −1

2 are also related by a reflection amplitude [4, 5] (we

are restricting to specific (c, a) fields):

Φj,−j,j = R(j,−j, j)Φ−j−1,−j,j . (3.28)

with

R(j,−j, j) = −(µ̃γ(1))−1−2j Γ(−j + m)Γ(−j − m)(Γ(2j + 1))2

Γ(1 + j + m)Γ(1 + j − m)(Γ(−2j − 1))2

m=−j−→
[

−(µ̃γ(1))−1−2j

(

Γ(2 + 2j)

Γ(−2j)

)2
]

· (Γ(−2j))2 . (3.29)

Since the observables Vj in the c = 1 string are mapped to Φj,−j of the coset, we see

from (3.28) that Ṽj maps to the operators Φj,j+1 in the coset. We shall use these amplitudes

7In [1], these were obtained by acting on Vj with j+
0 2j + 1 times. This leads to powers of β which can

be put to a constant consistently since j+ =
√

µ is a spin 0 operator.

– 15 –



J
H
E
P
0
2
(
2
0
0
6
)
0
1
3

to fix the relative normalization between the coset and c = 1 string operators. We may

write

Φj,−j,j = N 2 S(j)Φ−j−1,−j,j with N = Γ(−2j) , (3.30)

which tells us that

Φj,−j,j 7→ Γ(−2j)Vj and Φ−j−1,−j,j 7→
1

Γ(−2j)
Ṽ−j−1 . (3.31)

We will see later that these relative normalizations are indeed the natural ones when we

compare the disc one-point functions of the respective branes in the two theories.

3.4 Some connections to the conifold geometry

In this section, we briefly discuss a few target space geometrical aspects of the bulk theory.

We note that this subsection is technically somewhat orthogonal to the rest of the paper.

We discuss some features of the well known claim [27] that the c = 1 string theory is

equivalent to the topological B-model on the deformed conifold defined as a hypersurface

in C
4:

det

(

a1 a4

a3 a2

)

= a1a2 − a3a4 = µ . (3.32)

To support the claim, we review in some detail the construction of the analog of the

holomorphic three-form in the c = 1 bosonic string language. The holomorphic three-form

can locally be written as:

Ω =
da1da2da3

a3
. (3.33)

We can translate the holomorphic three-form in terms of the operators that generate the

ground ring using the relations a1 = xx′, a2 = yy′, a3 = xy′, a4 = yx′, where

x = O 1
2
, 1
2

y = O 1
2
,− 1

2

x′ = O 1
2
, 1
2

y′ = O 1
2
,− 1

2
. (3.34)

The resulting expression for the holomorphic threeform can be compactly written as:

Ω = ω ∧ θ′ − θ ∧ ω′ (3.35)

where we have made use of the following definitions for the volume form ω and the one-form

θ on the (x, y)-plane:

θ = xdy − ydx and ω = dθ = dx ∧ dy, (3.36)

and similarly for the right-movers. Using the duality between forms and vector fields [26],

one can dualize the three-form to the vector field S:

S = x∂x + y∂y − x′∂x′ − y′∂y′ . (3.37)
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In [26], there is a precise dictionary between physical vertex operators in the c = 1 string

and vector fields and differential forms on the conifold. From the above reasoning, the

vertex operator that corresponds to the holomorphic 3-form can now be read off to be

Ω 7→ a + a, (3.38)

where a is the ghost number one operator introduced in (3.13). The vector field S in (3.37)

measures the difference between left and right-moving Liouville momentum in the c = 1

bosonic string theory. All functions on the quadric defined by (3.32) must be S-invariant.

Indeed this is equivalent to the statement that all operators in the c = 1 theory have equal

left-right Liouville momentum [26].

There are an infinite number of left and right moving currents on the worldsheet

Js,n,n′ which are generated from the elements of the cohomology using a descent procedure

described in [26]. The currents that generate the left and right SU(2) action are those with

s = 1. These are symmetries of the c = 1 string and so symmetries of the B-model on the

deformed conifold. In the geometric description, these symmetries are therefore generated

by vector fields whose Lie derivative action on the holomorphic 3-form vanishes L · Ω = 0.

The explicit expressions for these vector fields can be obtained from the discussion in the

appendix of [25]. The s = 1 currents are given by8

X = a1
∂

∂a4
+ a4

∂

∂a2
Y = −a4

∂

∂a1
− a2

∂

∂a3

Z = a4
∂

∂a4
+ a2

∂

∂a2
− a1

∂

∂a1
− a3

∂

∂a3
(3.39)

They satisfy the algebra

[X,Y ] = Z [Z,X] = −X and [Z, Y ] = Y . (3.40)

These vector fields generate the left SU(2) currents and one can check that the Lie derivative

of each of these vector fields leaves Ω in (3.35) invariant. The simplest way to do this is to

define

Λ = df ∧ Ω = da1 da2 da3 da4 , (3.41)

and show that LXΛ = LXdf = 0 and similarly for Y and Z. That concludes our review

of some features and symmetries of the conifold geometry and its connection to the c = 1

string language. We move on from the closed string to the open string sector in the next

section.

4. D-branes and open strings

In this section, we shall present the boundary states for the B-branes in the topological

theory on the cigar by starting with the known BPS boundary state on the physical cigar

theory, and restricting to the chiral primaries. We shall show that the one-point functions of

8These coincide with the expressions in equation (2.24) of [25] when expressed in the (x, y, x′y′) variables.
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these operators precisely match the one-point functions of the c = 1 closed string operators

(described in the previous section) on the branes when the matter part of the brane is

at the point corresponding to Neumann boundary conditions. Further, by analyzing the

vacuum annulus diagram and disk diagrams in the topological theory, we show that the

open string spectrum and boundary two point functions are the same.

4.1 The branes of the c = 1 theory

In the c = 1 theory, the D-branes are described by a boundary state in the CFT describing

the free boson at self-dual radius tensored with a boundary state in the Liouville theory at

c = 25 with one BRST condition imposed.

In the c = 1 matter sector, the boundary states are those of SU(2)1 which span [28]

the three-dimensional SU(2) group manifold. The boundary condition breaks the SU(2)L×
SU(2)R of the closed strings to the diagonal SU(2)+ under which the open string states are

classified.

As described in the introduction, the Liouville theory admits two types of boundary

conditions. one corresponding to branes localized in the strong coupling region and the

other extended in the Liouville direction to the weak coupling region. The localized ZZ

branes do not have any further parameters, whereas the extended FZZT branes have an

additional modulus given by the complex parameter σ which is related to the position in

the Liouville direction where the brane dissolves.

In the open string sector, the ZZ branes admit only the identity representation, so

the only allowed marginal operators are the three Goldstone bosons corresponding to the

broken generators. At the north pole on the 3-sphere,9 these are (ic∂X, ce±i
√

2X). The

operator c∂X however is null in this theory, as can be seen from the negative sign in the

partition function of the ZZ brane in the c = 1 theory.10 When X has the interpretation of

time, this operator is the gauge field A0 which does not have a kinetic term. There can be

however physical Wilson lines of this gauge field when X is a Euclidean compact direction

(as we consider).

The FZZT branes on the other hand admit in the open string sector all the continuous

and discrete representations. The physical operators at ghost number one [29] are labeled

as V l
n where (l, n) are the quantum numbers of the conserved SU(2), 2l ∈ Z,−l ≤ n ≤ l.

The (l, l) operators are explicitly given by11

V bdry
l = ce

√
2(2l+1)(iX−ϕ)−

√
2ϕ. (4.1)

The 3 modes of dimension 1 on the FZZT branes correspond to the three Goldstone

modes of the broken generators. Turning on these modes changes the value of the zero

mode corresponding to the broken symmetry.

9In the circle description, this point corresponds to Neumann boundary conditions. The operators

e±i
√

2X become marginal only at the self dual radius.
10This can be seen by tensoring the ZZ partition function [13] with the annulus amplitude of the c = 1

Neumann brane [28].
11In contrast to the closed strings, the even dimensional representations of SU(2) are not allowed. we have

kept the convention α′
close = α′

closed in writing the above vertex operators on the branes. This introduces a

factor of two in the vertex operators (4.1) as a function of l compared to the closed strings.
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4.2 D0/ZZ branes

4.2.1 Boundary state

The (1, 1) ZZ brane in the c = 1 string theory is a tensor product of two boundary states:

the (1, 1) ZZ brane in Liouville theory and the Neumann brane in the matter sector. The

one point function of a closed string operator therefore factorizes as

〈Vj〉 = 〈e−
√

2(j+ 3
2
)φ〉 · 〈ei

√
2(j+ 1

2
)(X−X)〉 . (4.2)

The disc one-point functions for the ZZ branes are normalized so that 〈1〉 = 1. This is

useful as all momentum independent factors drop out of the expressions for the one-point

function. The non-trivial piece of the one point function arises from the Liouville part of

the operator (3.9) and can be read off from [13] to be (with b = 1 and Q = 2 in their

conventions)

〈Vj〉 = 2 · (πµγ(1))−j− 3
2 · 1

Γ(−2j − 1)Γ(−2j)
. (4.3)

In the coset theory, the properly normalized one-point function is [30, 5, 17, 31, 32]:

ΨD0(j ; −j,−j)

ΨD0(−3
2 ; 3

2 , 3
2)

= (µ̃γ(1))−
1
2
−j Γ(−2j)Γ(0)

Γ(−2j − 1)Γ(−2j)
· (πµγ(1))−1 Γ(1)Γ(3)

Γ(3)Γ(0)

=

[

Γ(−2j)

Γ(3)

]

· 2 (µ̃γ(1))−j− 3
2

1

Γ(−2j − 1)Γ(−2j)
(4.4)

Taking into account the normalization factor (3.31) for the two vertex operators with j = j

and j = −3
2 , we see that there is exact match with the c = 1 one point function.

4.2.2 Open string spectrum

The open string spectrum on the topological branes can be deduced from the annulus

amplitude by restricting to the open string chiral primaries. The localized branes have

only the identity representation in the open string channel e.g. [17], and the NS sector

open string partition function (k = 1) is given by

ZNS
1,1 (τ, ν) =

Θ3(τ, ν)

η(τ)3

∑

s∈Z+ 1
2

1

1 + yqs

(

qs2−sy2s−1 − qs2+sy2s+1
)

=
Θ3(τ, ν)

η(τ)3

∑

s∈Z+ 1
2

(

qs2−sy2s−1(1 − yqs)
)

. (4.5)

The total number of chiral primaries in the open channel can be obtained simply by writing

out the Ramond sector partition function and counting the number of Ramond ground

states. This can be easily done in our case. The result is

ZR
1,1(τ, 0) = 2 + 4q + 12q2 + . . . (4.6)

Thus, we infer that there are two chiral primary states. The dimension and R-charge of

these states can be found by now expanding (4.5) as

TrNS qL0yJ0 = q
c
24 ZNS

1,1 (τ, ν) (4.7)
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= 1 + q + (y−3 + y−1 + y + y3)q
3
2 + (y−2 + 3 + y2)q2 + . . .

It is easy to see that the two chiral primary states have dimension and R-charge (∆, QR)

given by (0, 0) and (3
2 , 3). The first state with (j = m = 0) and its reflected operator12

match the two physical open string states e±i
√

2X on the ZZ branes in the c = 1 theory dis-

cussed earlier. Note that this is simply the chiral part of the closed string map (3.9), (3.26),

after being careful about normalizations. We make a few remarks about the spectrum:

• The (j = −m = 0) state maps to the spin 1
2 representation in the closed string

theory (3.9), (3.26). In the open string theory, it maps to operators in the spin 1

representation. The reason is the same as to why only odd dimensional reps are

allowed on the FZZT branes in this theory [29], and boils down to the fact that the

conformal dimension (R charge) of a closed string operator is the sum of the left and

right dimensions (R charge). Operationally, this is the factor of two in (4.1).

• The other state with (−j = m = 3
2) and its reflected counterpart corresponds to the

ghost number zero states Bj, B̃j described in (3.12) and discussed in [1, 2].

• The operator corresponding to the state c∂X is not present in the spectrum, as on

the ZZ branes of the c = 1 theory. There is however one other mode which is not

a physical perturbative open string state which enters the definition of the B-brane

boundary state as the zero mode of the scalar corresponding to the R-current. This

corresponds to the Wilson line on the ZZ brane.

• The two open string “moduli” above are not dimension one operators on the physical

branes in the superstring theory involving this coset, such a brane would have no

moduli (e.g. the localized branes constructed in [33, 34]).

4.3 D2/FZZT branes

Let us introduce a bit of notation to facilitate the matching of boundary states between

the extended D2 branes of the coset and the FZZT branes in c = 1 string theory. The

FZZT branes are semiclassically defined by a boundary interaction of the form [14]

Sbdry = µB

∫

∂Σ
eφdx , (4.8)

where x is a coordinate along the boundary. The one point functions are solutions to certain

recursion relations which are obtained by looking at a bulk two point function involving

specific (bulk) degenerate fields. The result for the one point functions are written in terms

of a uniformization parameter s related to µB as cosh2(πbs) =
µ2

B
µ sin πb2 where we have to

take the limit b → 1. Here µ is the bulk cosmological constant. We shall explicitly write

them out in the following section. For now, we focus on a similar discussion of extended

branes in the coset CFT following [32].

12As in the closed string case, operators with j+j′ = −1 are reflected into each other, and the topological

theory will only count (e.g. from the Ramond sector ground states (4.6)) one for each such pair of operators.
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The discussion in [32] is in the context of N = 2 liouville theory with boundary, which

is just the mirror theory to the one we have been considering. In particular, there is a

precise map between the extended A-branes in that theory and the extended B-branes we

consider. These can again be described in terms of a boundary interaction term

Sbdy = −µ̃B

∫

dx(λλ − λλ)(ψ+ψ− − i
√

2∂θ)e−Qφ (4.9)

The common link between the two boundary interactions is that these are “holomorphic

square roots” of bulk screening operators [32]. The λ are boundary fermions that introduce

Chan-Paton factors on the boundary. The one point functions are again computed using

techniques similar to the Liouville case and are specified by a complex parameter σ which

is related to µ̃B above as µ̃B = 1
2πk (µ̃γ(1))

1
2 Γ(− 1

k ) cos(π
k σ).

4.3.1 Boundary state

Let us compare the one point functions of FZZT branes and the extended D2 branes of the

supersymmetric coset theory. The non-trivial piece arises from the Liouville factor, and

can be read off from [14] to be (putting b = 1)

〈Vj〉 = (πµγ(1))−j− 1
2 Γ(2j + 1)Γ(2j + 2) cosh(πs(2j + 1)) . (4.10)

Note that this is the unnormalized one point function and we have only kept the j-

dependent pieces. The relevant wavefunction in the coset theory can be obtained from [17,

5] to be

ΨD2(j ; −j,−j) = (µ̃γ(1))−j− 1
2

[

Γ(−2j)eiσ(2j+1) +
Γ(0)

Γ(2j + 1)
e−iσ(2j+1)

]

×

× Γ(2j + 1)Γ(2j + 2) .

= Γ(−2j) · 2 (µ̃γ(1))−j− 1
2 Γ(2j + 1)Γ(2j + 2) cos(πσ(2j + 1)) . (4.11)

Thus, taking into account the normalization (3.31), we see that the unnormalized one point

functions once again match if we identify the FZZT parameter (s) with the semi-classical

B-field on the D2 brane (σ) as is = σ.

4.3.2 Open string spectrum and two point function

The open string spectrum is deduced from the annulus amplitude [17] as before. The

open string spectrum on extended D2-branes on the cigar is independent of µB and the

boundary state allows all the continuous and discrete representations in the open string

channel. The analysis of the spectrum therefore reduces to that of the (chiral part of) the

closed string spectrum as in section 3. Restricting attention to the chiral primaries, we

find that the topological open string operators labeled by an half-integer l can be mapped

to the marginal operators V bdry
l of the FZZT branes.

Note that in this case, like the closed strings, but in contrast to the localized branes,

the three operators corresponding to motion along the broken SU(2) directions are all

physical.

– 21 –



J
H
E
P
0
2
(
2
0
0
6
)
0
1
3

The boundary operators have a boundary fermion number, and each brane thus has a

two dimensional Chan-Paton index. The open string operators have even or odd boundary

fermion numbers at each end and are thus two by two matrices. This fermion number maps

to the ghost number as for the closed strings, and while comparing boundary two point

functions, we restrict ourselves to physical operators at fermion number 1.

The boundary open string reflection amplitude on the FZZT branes is:

d(l|s1, s2) = ν
j+ 1

2
FZZ

G(−2l − 1)

G(2l + 1)
×

1

S(l + 3
2 + is1+s2

2 )S(l + 3
2 − is1−s2

2 )S(l + 3
2 + is1−s2

2 )S(l + 3
2 − is1−s2

2 )
(4.12)

where νFZZ = πµγ(b = 1). The boundary two point function for chiral operators with

fermion number one (l + m = 0) on the D2-brane on the cigar is [32]:

d−1
λ (l,m|J1, J2) =

Γ(−l + m)

Γ(l + m + 1)
νl+ 1

2
G(−2l − 1)

G(2l + 1)
×

1

S(l + J1 + J2 + 5
2)S(l + J1 − J2 + 3

2)S(l − J1 + J2 + 3
2)S(l − J1 − J2 + 1

2)

= Γ(−2l) · νj+ 1
2
G(−2l − 1)

G(2l + 1)
×

1

S(l + 3
2 + is1+s2

2 )S(l + 3
2 + is1−s2

2 )S(l + 3
2 − is1−s2

2 )S(l + 3
2 − is1+s2

2 )
(4.13)

where the parameter J is related to σ as σ = 2J + 1. This makes it clear that we need

to identify is = σ, just as with the one-point functions. One can observe that with this

identification, these two expressions agree upto a normalization factor which we observe to

be the square root of the factor in (3.30), (3.31) as expected for a boundary operator.

5. Closing remarks

We have revisited the correspondence between the topological cigar at level one and the

c = 1 string theory and clarified the discussion in [1] regarding the mapping of bulk

operators. We have reproduced the states listed in the appendix of [1] in our analysis, and

in our description the identification of the states in the list as null vectors in the Verma

modules of the affine SL(2, R) current algebra is made manifest.13 The same procedure

also allowed us to precisely map the states in the list to specific representatives of the

topological observables using the Wakimoto variables.

We also showed that the states in the (twisted) super-coset to which the states of the

c = 1 string are mapped, descend from the Hilbert space of the parent SL(2, R)1 theory

derived in [11],
∑

w D+w
−j=1/2. The states that naively seem to descend from representa-

tions labeled by different j values are understood to descend from the spectrally flowed

representations.

13We believe that our analysis may clarify properties of the c = 1 cohomology used in the comparison

of the c = 1 string amplitudes to the amplitudes derived from the Landau-Ginzburg model as described

in [35].
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These results teach us a little about the relation of the topological theory on the cigar

with the physical superstring theory. To compare the spectrum and correlation functions

in the A model on the cigar to those of the c = 1 theory, we use the untwisted cigar

SCFT and restrict to states which formally obey the chiral primary condition. Most of

these states are not of dimension one, but could be tensored with other states to produce

on-shell states in a superstring theory on a larger spacetime involving the cigar, as done

in [36, 37].

We matched the one point functions that define the D0/D2 branes in the topological

coset with the ZZ/FZZT branes of the c = 1 string theory. Further, we mapped the open

string deformations for the two kinds of branes and also the boundary two point function

on the extended D2 and FZZT brane. The statements in the above paragraph also apply

to the open string modes on the branes in the topological theory.

At various places in the paper, we have a discussion of the SU(2) symmetry intrinsic

to the c = 1 theory. The closed c = 1 string theory has a SU(2) × SU(2) symmetry, and

this is also a symmetry of the topological string theory on the coset. However, the currents

that generate these symmetries are not dimension one currents in the untwisted SCFT and

and so do not generate symmetries of the superstring theory involving this coset (e.g. cigar

×R
1,3).

Both the ZZ and the FZZT branes (and their topological counterparts) preserve a

diagonal SU(2). The D2/FZZT branes have three marginal operators (e±i
√

2X , ∂X) which

correspond to motion in the directions of the broken generators. On the D0/ZZ brane,

one of these operators (∂X) becomes null, and only its zero mode survives. Based on

the identification of the closed string theory with the topological theory on the deformed

conifold, it is natural to identify the localized (compact) brane with the Lagrangian brane

wrapping the S3 of the deformed conifold.

We believe that our analysis could be useful in recovering the BPS sector of the gauge

theory physics for branes on the conifold from an exact worldsheet description. It would be

especially interesting to apply similar techniques to more general non-compact Calabi-Yau

manifolds. For instance, it would be instructive to compute the superpotential for scalars

arising from combinations of D-branes wrapping cycles in the Calabi-Yau purely from the

worldsheet theory.

Our analysis could also be helpful to better understand the topological subsector of

the AdS/CFT correspondence, and more generally, holography. Recently, it was shown [37]

that the Liouville field emerges as a holographic direction in topological theories involving

the SL(2) current algebra. In the last couple of years, holography in theories involving the

Liouville theory has been understood better using D-branes in these theories [38, 39]. The

identification of the D-branes in c = 1 and the D-branes in the topological cigar goes a

step towards completing this circle of ideas.

We close by noting that the techniques used to map the closed string observables are

not specific to the cigar at level one. In particular, one can do a similar computation for

the c < 1 theories coupled to Liouville theory. Recently it was suggested in [2] that these

are related to c < 1 non-minimal matter coupled to Liouville. It would be interesting

to repeat the null vector analysis for SL(2, R) at general level k to get a better grip on
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the cohomology of the twisted supercosets, i.e. of the topological string on these N = 2

superconformal backgrounds, from first principles.
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A. Vertex operators on the cigar

In this appendix, we construct the primaries of the supersymmetric coset SL(2, R)/U(1)

at level k. We follow the conventions of [40, 17] and references therein. The primaries of

the bosonic SL(2, R)k+2 are denoted V j
mbosmbos

, where mbos is the charge under the purely

bosonic j3 current

j3(z)V j
mbosmbos

(0) ∼
mbosV

j
mbosmbos

z
j
3
(z)V j

mbosmbos
(0) ∼

mbosV
j
mbosmbos

z
. (A.1)

They have (left and right) conformal dimensions

∆(Vj,mbos,mbos
) = ∆(Vj,mbos,mbos

) = −j(j + 1)

k
. (A.2)

As these fields are independent of the free fermions, they are also primary fields of the

superconformal SL(2, R) at level k. In order to obtain the primaries of the coset, it is

useful to bosonize the various currents as follows:

i∂H = ψ+ψ− J3 = −
√

k

2
∂X3

JR = i

√

c

3
∂XR j3 = −

√

k + 2

2
∂x3 , (A.3)

where the normalizations ensure that the scalars have canonical OPEs. Since we have left-

right symmetric conventions, there are similar expressions for the right-moving sector as

well. These scalars are not all independent and using the definition of the bosonic currents

and the N = 2 algebra (2.3), we can rewrite all scalars in terms of X3 and XR:

√

k

2
x3 = −iXR +

√

k + 2

2
X3 and iH = −

√

2

k
X3 + i

√

k + 2

k
XR . (A.4)
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The right moving currents have a similar expansion in terms of scalars. Given these ex-

pressions, and knowing that the current that is gauged in the coset are j3 (in the bosonic

case), we can decompose

V j
mbos,mbos

= Φj
mbos,mbos

e

q

2
k+2

(mbosx3+mbosx3)

≡ Φj
mbos,mbos

e
2i√

(k+2)k
(mbosXR+mbosXR)

e

q

2
k
(mbosX3+mbosX3)

(A.5)

where Φj
mbos,mbos

is a primary of the bosonic Euclidean coset CFT (at level k + 2). One

infers that

∆(Φj
mbos,mbos

) = −j(j + 1)

k
+

m2
bos

k + 2

∆(Φj
mbos,mbos

) = −j(j + 1)

k
+

m2
bos

k + 2
(A.6)

In the supersymmetric coset, we also gauge the fermionic current ψ3 and the primary we

start with in the parent theory is of the form V j
mbos,mbos

einH+inH . The coset primaries are

obtained by using (A.5) and the expression for H in (A.4). These two equations lead to

the decomposition of the primary in the parent theory of the form (we suppress the right

movers)

V j
mbos

einH = Φj
mbos

e
i
“

2mbos
k+2

+n
”

q

k+2
k

XR e

q

2
k

(mbos+n)X3 . (A.7)

This allows one to infer that the full superconformal coset primary is given by

Φj,n,n
mbos,mbos

= Φj
mbos,mbos

e
i
q

k+2
k

h“

2mbos
k+2

+n
”

XR+
“

− 2mbos
k+2

+n
”

)XR

i

. (A.8)

It follows from equation (A.7) that the J3, J
3

eigenvalues of Φj,n,n
mbos,mbos

are

m = mbos + n m = mbos + n . (A.9)

In terms of (m,m) and (n, n), the left/right conformal dimension is read off to be

∆(Φj,n,n
mbos,mbos

) = −j(j + 1)

k
+

m2

k
+

n2

2

∆(Φj,n,n
mbos,mbos

) = −j(j + 1)

k
+

m2

k
+

n2

2
. (A.10)

while the R-charge is given by

Q(Φj,n,n
mbos,mbos

) =
2m

k
+ n

Q(Φj,n,n
mbos,mbos

) =
2m

k
+ n . (A.11)

In the NSNS sector, we have n ∈ Z, while in the RR sector, we have n ∈ Z + 1
2 . The

axial gauging of the coset is done such that the J3 and J
3

eigenvalues m and m are are

related to the asymptotic momentum and winding of the circle direction of the cylinder at

infinity (2.6)

m =
p + kw

2
m =

p − kw

2
. (A.12)
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B. Extended N = 2 current algebra

An N = 2 algebra at central charge c = 9 allows for an extension with higher spin cur-

rents [41]. The extended algebra is associative provided the currents satisfy some extra

conditions [41]. A few explicit realizations of the associative extended current algebra in

terms of minimal models are known. In this appendix, we exhibit another realization of

this extended current algebra, on the superconformal cigar at central charge c = 9. We

realize the algebra explicitly in terms of asymptotic variables on the cigar (or N = 2 Liou-

ville theory). We then remark on how the operators that extend the algebra map into the

c = 1 bosonic string theory.

It was shown in [41] that a left-moving N = 2 superconformal algebra at central charge

c = 9 allows for an extension by two currents of spin 3/2 and charges ±3 (which we denote

by R and R∗) and two currents of spin 2 and charges ±2 (namely Y and Y ∗). A constructive

way to find this extension is to first consider the operators R and R∗, which are (standard)

spectral flow operators, and then to close the algebra using the OPE’s. It can be shown

that the resulting algebra is associative provided some extra relations between the currents

are satisfied [41]:

(JRR)(z) = ∂R(z) (JRY ) +
1

2
(G−R) = ∂Y (z). (B.1)

The algebra in the general case was given in terms of the modes of the currents in [41].

We remark in passing that at large volume, the currents R can be constructed using

the fact that a unique holomorphic three-form exists on a Calabi-Yau threefold. (For

c = 6, there exists a similar extension of the current algebra, leading to a small N = 4

superconformal algebra. Also for higher values of the central charge, currents associated

to holomorphic forms on the CYn spaces can be defined. And, indeed, worldsheet currents

can be associated to forms on special holonomy manifolds, generically.)

In summary, we conclude that in the cigar or Liouville conformal field theory at central

charge c = 3+ 6
k , and at k = 1, we can enlarge the standard N = 2 superconformal algebra

with the above currents.

In asymptotic variables

In the following, we exhibit explicitly the realization of the N = 2 superconformal algebra

in terms of asymptotic coordinates on the cigar (where in this appendix Q =
√

2). We first

recall the N = 2 superconformal algebra in these variables (see e.g. [42]):

Tas = −1

2
(∂ρ∂ρ + ∂θ∂θ + ψρ∂ψρ + ψθ∂ψθ + Q∂2ρ)

G±
as =

1√
2
(i(ψρ ± iψθ)(∂ρ ∓ i∂θ) + iQ(∂ψρ ± i∂ψθ))

JR
as = −iψρψθ + iQ∂θ. (B.2)

We also define the useful quantities:

ψ±
cig =

1√
2
(ψρ ± iψθ)
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−iψρψθ = ψ+
cigψ

−
cig = i∂H. (B.3)

We now wish to extend this standard N = 2 algebra and show that it closes on itself,

and that it does satisfy the associativity condition. We define first of all the left-moving

currents which are exponentials in the free boson corresponding to the U(1)R current, and

which have dimension 3/2 and charge 3:

R =
√

2eiH+i
√

2θ =
√

2ψ+ei
√

2θ

R∗ =
√

2e−iH−i
√

2θ =
√

2ψ−e−i
√

2θ. (B.4)

Next we record the currents Y and Y ∗ that arise from considering the OPE’s of these

currents with the supercurrents. These are currents with dimension 2 and charges ±2:

Y =
i√
2
ei
√

2θ(∂ρ + i∂θ − i
√

2ψθψρ) (B.5a)

Y ∗ =
i√
2
e−i

√
2θ(∂ρ − i∂θ + i

√
2ψθψρ). (B.5b)

This explicit realization of the algebra can now be used to check straightforwardly that the

equations (B.1) for associativity are satisfied. This gives a new and interesting representa-

tion of the extended N = 2 superconformal algebra at c = 9.

Since we haven’t found an encoding of the extended algebra in terms of OPE’s in the

literature (although it immediately follows from the algebra in terms of the oscillators [41]),

we record it here for the readers convenience:

G−(z)R(w) ' 2Y (w)

(z − w)
(B.6a)

G+(z)R∗(w) ' 2Y ∗(w)

(z − w)
(B.6b)

G+(z)Y (w) ' 3R(w)

(z − w)2
+

∂R(w)

z − w
(B.6c)

G−(z)Y ∗(w) ' 3R∗(w)

(z − w)2
+

∂R∗(w)

z − w
(B.6d)

R(z)R∗(w) ' 2

(z − w)3
+

2JR(w)

(z − w)2
+

(JR)2(w) + ∂JR(w)

(z − w)
(B.6e)

R(z)Y ∗(w) ' G+(w)

(z − w)2
+

(JRG+)(w)

(z − w)
(B.6f)

R∗(z)Y (w) ' G−(w)

(z − w)2
− (JRG−)(w)

(z − w)
(B.6g)

Y (z)Y ∗(w) ' 3

(z − w)4
+

2JR

(z − w)3
+

1
2(JR)2 + T + ∂JR

(z − w)2

+
−1

2(G+G−) + (TJ) + 1
4∂((JR)2) + ∂T

(z − w)
. (B.6h)

We have checked all these OPE’s on the representation in terms of asympotic variables, and

also that the currents R,R∗, Y and Y ∗ have the correct OPE’s with the energy-momentum
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tensor and the U(1)R current in accord with their conformal dimension and R-charge. All

other OPE’s (except for the standard N = 2 superconformal algebra OPE’s that are not

mentioned above) are regular.

Mapping the algebra onto the c = 1 string

We can embed this well-known symmetry structure in the standard realization of super-

symmetric string theory, into the much larger symmetry group of the topological string

realization of a subsector of the theory. To that end, we proceed to translate the currents

constructed above into the c = 1 language. The map between the basic twisted N = 2

currents and the currents in c = 1 string theory has already been discussed in the bulk of

the paper. It remains to understand the currents R,R∗ and Y, Y ∗. The operator R is a

chiral primary operator in the untwisted theory with conformal dimension and R-charge

(∆, Q) = (3
2 , 3). From equation (3.9) in the bulk of the paper, it follows that it can be

mapped to the left-moving part of the operator V− 3
2
, which has the c = 1 representation

R(z) 7→ c e−i
√

2X(z) . (B.7)

¿From the definition of the operator Y (z) in (B.6), and the mapping of the supercurrent

G−(z) in (2.12), we conclude that

Y (z) = G−
−1 · R(z) 7→ β(z) e−i

√
2X(z) . (B.8)

This is the integrand of the operator denoted K−(z) we introduced in (3.10). It plays a

crucial role in constructing representatives of the whole c = 1 string cohomology. We have

thus identified a small subalgebra of the large symmetry group of the c = 1 string with

higher spin currents that are already present in the full string theory.
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